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Abstract. The most general one dimensional reaction-diffusion model with nearest-neighbor interactions
solvable through the empty interval method, and without any restriction on the particle-generation from
two adjacent empty sites is studied. It is shown that turning on the reactions which generate particles
from two adjacent empty sites, results in a gap in the spectrum of the evolution operator (or equivalently
a finite relaxation time).

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 02.50.Ga
Markov processes

1 Introduction

Reaction-diffusion systems have been studied using
various methods, including analytical techniques, approx-
imation methods, and simulation. The proper approxima-
tion methods are generally different in different dimen-
sions, as for example the mean field techniques, working
good for high dimensions, generally do not give correct
results for low dimensional systems. A large fraction of
analytical studies, belong to low-dimensional (specially
one-dimensional) systems, where solving low-dimensional
systems should in principle be easier [1–13].

In this context, the term solvability (or integrability)
is used in different senses. In [14–16], integrability means
that the N -particle conditional probabilities’ S-matrix
is factorized into a product of 2-particle S-matrices.
In [17–27], solvability means closedness of the evolution
equation of the empty intervals (or their generalization).
In [28–30], solvability means that the evolution equation
of n-point functions contains only n- or less- point func-
tions.

Among the important aspects of reaction-diffusion sys-
tems, are the stationary state of the system (or one of
the quantities describing the system) and the relaxation
behavior of the system towards this configuration. In the
thermodynamic limit (when the size of the system tends to
infinity) these behaviors may show discontinuity in terms
of the control parameters of the system. In [31–34] (for
example), such behaviors are studied.

The empty interval method (EIM) has been used to
analyze the one dimensional dynamics of diffusion-limited
coalescence [17–20]. Using this method, the probabil-
ity that n consecutive sites are empty has been calcu-
lated. This method has been used to study a reaction-
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diffusion process with three-site interactions [22]. EIM has
been also generalized to study the kinetics of the q-state
one-dimensional Potts model in the zero-temperature
limit [21].

In this article, we are going to study all the one di-
mensional reaction-diffusion models with nearest neigh-
bor interactions which can be exactly solved by EIM.
It is worth noting that ben-Avraham et al. have stud-
ied one-dimensional diffusion-limited processes through
EIM [17–20]. In their study, some of the reaction rates
have been taken infinite, and they have worked out the
models on continuum. For the cases of finite reaction-
rates, some approximate solutions have been obtained.

We study models with finite reaction rates, obtain con-
ditions for the system to be solvable via EIM, and then
solve the equations of EIM. In [23], general conditions
were obtained for a single-species reaction-diffusion sys-
tem with nearest neighbor interactions, to be solvable
through the empty-interval method. Solvability means
that evolution equation for En (the probability that n con-
secutive sites be empty) is closed. It turned out there, that
certain relations between the reaction rates are needed, so
that the system is solvable via EIM. The evolution equa-
tion of En is a recursive equation in terms of n, and that
this equation is linear. It was shown that if certain reac-
tions are absent, namely reactions that produce particles
in two adjacent empty sites, the coefficients of the empty
intervals in the evolution equation of the empty intervals
are n-independent, which makes them be solved more eas-
ily. The criteria for solvability, and the solution of the
empty-interval equation were generalized to cases of multi-
species systems and multi-site interactions in [24,26,27].

Here we want to study the case dropped from the
study in [23], namely when there are interactions pro-
ducing particles from two adjacent empty sites. Doing
so, we are considering the most general one dimensional
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reaction-diffusion model with nearest-neighbor interac-
tions which can be solved exactly through EIM.

The scheme of the paper is as follows. In Section 2,
the most general one dimensional reaction-diffusion model
with nearest-neighbor interactions which can be solved ex-
actly through EIM is introduced. In the same section the
evolution equation of the empty intervals is obtained for
a lattice. Then, using a limiting procedure a similar equa-
tion is obtained for the continuum. In Section 3 the sta-
tionary solution to this equation is obtained. In Section 4
the relaxation of the system towards its stationary state
is investigated. Section 5 is devoted to the concluding re-
marks.

2 Models solvable through the empty interval
method

To introduce the notation, let us briefly review the cri-
teria that a single-species nearest-neighbor-interaction
reaction-diffusion system be solvable through the empty-
interval method (EIM). Consider a one-dimensional
lattice. It was shown in [23], that the most general in-
teractions for a single-species model in a one-dimensional
lattice with nearest-neighbor interactions are

•◦ →
{
••, r1

◦•, r2
, ◦• →

{
•◦, r3

••, r4
, •• →

{
•◦, r3

◦•, r2
,

(1)
and

◦◦ → anything, r, (2)

in order that the system be solvable through the EIM.
Here an empty (occupied) site is denoted by ◦ (•), and
ri’s and r are reaction rates. Denoting the probability of
finding n consecutive empty sites by

P (
n︷ ︸︸ ︷◦ ◦ · · · ◦) =: En, (3)

it was then shown that

dEn(t)
dt

= (r2 + r3)(En−1 + En+1 − 2En)

− (r1 + r4)(En − En+1) − (n − 1) r En, n > 1, (4)

dE1(t)
dt

= (r2+r3)(1+E2 − 2E1)−(r1 + r4)(E1 − E2),

(5)
dEL+1(t)

dt
= −L r EL+1, (6)

where the length of the lattice has been assumed to be
L+1. It is seen that the equation (5) takes a form similar
to equation (4), provided one defines

E0(t) := 1. (7)

In [23], equations (4) to (6) were actually obtained for the
case r = 0. Equations (4) to (7), and of course the initial

values of En’s, are a complete set of equations to obtain
En(t). One can absorb the rate (r2 + r3) in the definition
of time, and rewrite equations (4) and (5) as

dEn(t)
dt

= (En−1 + En+1 − 2En) − b (En − En+1)

− (n − 1) c En, 0 < n < L + 1, (8)

where

b :=
r1 + r4

r2 + r3
,

c :=
r

r2 + r3
. (9)

The aim is to solve equation (8) along with equations (6)
and (7).

The continuous-space form of the above equations is

∂E

∂t
=

∂2E

∂x2
+ b

∂E

∂x
− c xE, 0 < x < X, (10)

with the boundary conditions

E(x = 0, t) = 1, (11)
∂E(x = X, t)

∂t
= −c X E(x = X, t). (12)

The procedure to write these equations in continuous
space is to define

x := n ∆,

t̃ := ∆2 t,

b̃ :=
b

∆
,

c̃ :=
c

∆3
,

E(x, t̃) := En(t). (13)

One then expands the right-hand sides of equations (7)
and (8) in terms of ∆, sends ∆ to zero, and substitutes
the quantities with tilde with the corresponding quantities
without tilde.

Using the new variable E defined through

E(x, t) := E(x, t) exp
(

b x

2

)
, (14)

one can rewrite equations (10) to (12) as

∂E
∂t

=
∂2E
∂x2

−
(

b2

4
+ c x

)
E , 0 < x < X, (15)

E(x = 0, t) = 1, (16)
∂E(x = X, t)

∂t
= −c X E(x = X, t). (17)
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3 The stationary solution

Denote the stationary solution to equations (10) and (12)
by EP. It is seen that EP is a linear combination of the
Airy functions, so,

EP(x) = exp
(
−b x

2

) {
α Ai

[
c−2/3

(
c x +

b2

4

)]

+β Bi
[
c−2/3

(
c x +

b2

4

)]}
, (18)

where α and β are two constants satisfying

α Ai
(

c−2/3 b2

4

)
+ β Bi

(
c−2/3 b2

4

)
= 1,

α Ai
[
c−2/3

(
c X +

b2

4

)]

+ β Bi
[
c−2/3

(
c X +

b2

4

)]
= 0. (19)

This solution is simplified for X → ∞ (the thermo-
dynamic limit). As Bi(y) behaves like the exponential of
a y3/2 for y → ∞, it is seen that in the thermodynamic
limit β is zero. So,

EP(x) =
1

Ai
(

c−2/3 b2

4

) exp
(
−b x

2

)

× Ai
[
c−2/3

(
c x +

b2

4

)]
, X → ∞. (20)

It is seen that there is a unique stationary solution.
The above argument is valid for c �= 0. If c = 0, then

E(x = X, t), and hence E(x = X, t), is t-independent, and
one has

EP(x) = γ + (1 − γ) exp(−b x), c = 0, (21)

where γ is an arbitrary constant between zero and one.
It is seen that in this case the stationary solution is not
unique. It is also noteworthy that equation (21) is not the
limit of equations (18) or (20) as c tends to zero.

4 Relaxation towards the stationary solution

Defining
F (x, t) := E(x, t) − EP(x), (22)

it is seen that the evolution equation for F is the same as
that of E, except for the fact that the boundary conditions
for F are homogeneous. To calculate F (x, t), one seeks the
eigenvalues and eigenvectors of the evolution operator:

ε fε(x) =
d2fε

dx2
+ b

dfε

dx
− c x fε, 0 < x < X, (23)

fε(0) = 0, (24)
ε fε(X) = − c X fε(X). (25)

The solution to this is

fε(x) = exp
(
−b x

2

)

×
{

α Ai
[
c−2/3

(
c x + ε +

b2

4

)]

+ β Bi
[
c−2/3

(
c x + ε +

b2

4

)]}
, (26)

where α and β are two constants satisfying

α Ai
[
c−2/3

(
ε +

b2

4

)]
+ β Bi

[
c−2/3

(
ε +

b2

4

)]
= 0,

α Ai
[
c−2/3

(
c X + ε +

b2

4

)]

+ β Bi
[
c−2/3

(
c X + ε +

b2

4

)]
= 0. (27)

It is seen that the above equations for α and β have
nonzero solutions, only for certain discrete values of ε.
This means that the spectrum of the evolution operator is
discrete, and there is a gap between zero and the largest
nonzero eigenvalue of the evolution operator. Here too, the
solution is simplified if one considers the thermodynamic
limit. In this case,

fε(x) = exp
(
−b x

2

)
Ai

[
c−2/3

(
c x + ε +

b2

4

)]
, X → ∞,

(28)
where ε is among εn’s:

εn := c2/3 zn − b2

4
, (29)

and zn’s are the zeros of the Airy function:

Ai(zn) = 0. (30)

It is seen that if one tends c to zero and X to infinity, the
spectrum of the evolution operator tends to (−∞,−b2/4).
However, if one puts c = 0 and X = ∞, and then solves
the eigenvector equation, another result is obtained. In
this case, equations (23) to (25) become

ε fε(x) =
d2fε

dx2
+ b

dfε

dx
, 0 < x, (31)

fε(0) =0, (32)
lim

x→∞ fε(x) =0. (33)

The solution to these is

fε(x) = sinh

(√
ε +

b2

4
x

)
exp

(
−b x

2

)
, (34)

and the only condition for ε is that ε must be negative.
That is, the spectrum of the evolution operator is (−∞, 0).
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5 Concluding remarks

The most general one-dimensional single-species exclu-
sion model was considered, for which the evolution of the
empty-intervals is closed. The effect of particle creation in
two empty adjacent sites was specially investigated. The
stationary solution was obtained and the relaxation to-
wards this stationary solution was studied. It was shown
that if the rate of particle creation in adjacent empty sites
is nonzero, then the spectrum of the evolution operator
of the empty intervals is discrete. If this rate is zero and
the system is infinite, then the spectrum is continuous.
However, the spectrum depends on whether one finds the
spectrum for the finite system and then tends the size of
the system to infinity, or the spectrum is directly calcu-
lated for the infinite system. In the former case, the largest
eigenvalue of the evolution operator is negative (there is
a gap in the spectrum) and the results of [23] are recov-
ered. This means the the relaxation of the system towards
its steady state is exponential, in other words, the system
has a finite relaxation time. In the latter case, there is no
gap in the spectrum and the spectrum extends to zero.
So in this case the relaxation of the system towards its
steady state is not exponential, in other words, the relax-
ation time of the system is infinite. This is an example of
a system for which the limit of the spectrum as the size of
the system tends to infinity is different from the spectrum
of the infinite system [1].
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